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The path-dependent electrodynamics of bound charges: QED 
of spinors in an external Coulomb field 
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Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdanski, 80-952 Gdansk, Wita 
Stwosza 57. Poland 

Received 16 February 1984 

Abstract. The manifestly gauge invariant relativistic electrodynamics of neutral atoms is 
derived from a path-dependent Lagrangian. A second quantised spinor field is used for 
the description of electrons, while the infinitely heavy nucleus is represented by a static 
Coulomb field. Classical Lagrangian formalism is constructed. Generalised Poisson 
brackets are obtained from canonical formalism. Canonical quantisation is performed. 
The whole description is without any reference to the electromagnetic potentials. A 
comparison with other formulations is given. 

1. Introduction 

The very first formulation of quantum electrodynamics (Dirac 1927a,b) was used for 
the description of the interaction of neutral atoms with the electromagnetic field. 
Already in these fundamental papers two different forms of the interaction Hamiltonian 
were used. The first one was based on the following description of the interaction energy 

where 6 is the position of the electron, to the position of the nucleus, e ( t o )  the vector 
of the electric field. The second one was based on the minimal coupling principle, i.e. 
substitution of the canonical momentum p of the non-interacting particle by 
p - ( e / c ) a ( t )  where a is the vector potential in the Coulomb gauge. 

After the discovery of the Dirac equation for electrons, the construction of the 
relativistic version of the theory became the main aim of most papers on QED. The 
interaction was usually introduced by employing the minimal coupling method. This 
method employs potentials as basic dynamical variables describing the electromagnetic 
fields and thus, since potentials are not observables, is associated with the problems 
connected with gauges. The question of the gauge invariance of QED is far more 
camplicated than that for the classical case. A survey of these problems can be found 
in Haller (1975). 

QED has a local and covariant form only in the Lorentz gauge. However, one has 
to introduce unphysical states normalised with respect to an indefinite metric. The 
basic alternative is to use the Coulomb gauge. No unphysical states appear, but the 
components of the vector potential do not form a four-vector. The commutation rules 
have a non-local form. The Coulomb interaction, which replaces the fourth component 
of the vector potential, also has a non-local form, and propagates with an infinite 
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velocity. Despite the behaviour of the potentials, the real observables of the EM field, 
i.e. the components of f W m  have a covariant character. An important feature of the 
Coulomb gauge is the non-quantised description of the Coulomb field, and that 
corresponds closely with the physical reality, since photons are associated only with 
radiation. 

A method of avoiding these complications is based on an observation that the 
gauge problems can be avoided if the description involves only gauge-independent 
quantities. One can treat the tensor f,” as the set of dynamical variables for the 
electromagnetic field. The potentials, if introduced at all, are functionals of f P y ,  and 
serve only as mathematical aids which simplify the field equations. 

QED based on the above observations was constructed by Belinfante and Lomont 
(1951). In the early sixties, De Witt (1962) and Mandelstam (1962) constructed QED 

without potentials, in the so-called path-dependent formulation. The basic variables 
of the theory are the components of f p y  for the EM field, and @(x, P )  and @*(x, P )  
for the charged particles. The latter ones are related to the conventional gauge- 
dependent operators @ and @* by the formula 

and its adjoint. The integral on the right-hand side of (1.2) is to be taken over a 
spacelike path joining the point x with spatial infinity. The operators @(x, P )  are 
path-dependent (Mandelstam 1962). If the path P is deformed infinitesimally, close 
to a point z, while the end-point remains fixed, this changes the operators by 

6,@(x, P) = ie @(x, P )  +fUy(z) du,” (1.3) 

where du,, is an infinitesimal surface element spanned between the curve P and its 
deformation. This feature is the source of the name of the theory. It should be noted 
that the word ‘path’ means here an abstract line in the Minkowski space without any 
direct physical interpretation. The arbitrariness of the choice of paths is a manifestation 
of the freedom of the fixing of the phase factors in the operators of charged fields. 

This version of QED was further studied in the works of Sarker (1963) and Mandel- 
stam (1968). Bialynicki-Birula (1963) adapted the formalism to suit Yang-Mills fields. 
Belinfante (1962) showed that after averaging over all straight spatial lines, the theory 
is concurrent with that of Belinfante and Lomont (1951). Rohrlich and Strocchi (1965) 
performed an average over all possible straight paths, including the timelike ones. 
They showed that this procedure is equivalent to the introduction of gauge-invariant 
and path-independent quantities d,, which behave as potentials in the Landau gauge: 

[ d p ( x ) ,  d v ( ~ ’ ) I = - - i ( g + v  -a,a, /o)D(x -x’). ( 1.4) 

These operators fulfil the Lorentz condition a,&+ = 0, since they are functionals of 
the fields f P y :  

(1.5) 

where Di is a Green function of the inhomogeneous d’Alembert equation. The Lorentz 
condition is consistent with the commutation rules and is an operator equation. Thus, 
there is no need for the indefinite metric. 
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From the above review one can conclude that the construction of QED without 
potentials is always associated with the introduction of a certain non-locality into the 
theory. Indeed, in a theory without potentials this non-locality is necessary for the 
description of the Aharonov-Bohm effect. The non-locality is often thought to be a 
serious drawback of the path-dependent theory, especially when compared with the 
apparent locality of a theory with potentials, e.g. Aharonov and Bohm (1961, 1962). 
However, from the theorem of Strocchi and Wightman (1974) on the charge superselec- 
tion rule, one can infer that there are no local charged states in QED. This means that 
the non-local nature is intrinsic to the theory, and cannot be avoided even in the 
apparently local formulations. Thus, the charge carrying operators of the path-depen- 
dent theories, e.g. (l.2), must have a non-local form. 

There has been renewed interest in the QED of atoms and molecules because of 
the development of quantum optics. The gauge-independent form of the non-relativistic 
QED of molecules and atoms is well known. It is associated with the so-called multipolar 
Hamiltonian. However, for many years the relationship of this theory with the Coulomb 
gauge QED was not clear. Also the complete form of the multipolar Hamiltonian was 
not known. These problems were first solved by Power and Zienau (1957, 1959). They 
obtained the final form of the unitary transformation leading to the multipolar formal- 
ism, and presented the full form of the Hamiltonian, including, for the first time, the 
term 

f J p 1 2 ( x )  d3x, 

U = exp( i d3xp(x)  - a( . ) )  

( 1.6) 

where p l  is the transverse part of the polarisation operator. The Power-Zienau unitary 
operator has the form 

( 1  -7) 

where, in the original papers, p ( x )  was expressed by the first terms of the multipolar 
expansion. The Hamiltonian of Power and Zienau has a gauge-independent form for 
the neutral atom. The electromagnetic fields are represented by vectors b and d =  
eL+pL.  However, as the canonical variables the authors used the vector potential in 
the Coulomb gauge and the field .cL. 

Fiutak (1963) introduced a new representation of the multipolar Hamiltonian, and 
of the unitary transformation. This representation uses path integrals, and thus is 
closely related with the path-dependent electrodynamics of De Witt ( 1962) and Mandel- 
stam (1962). The Fiutak approach was later developed in many papers, e.g. Woolley 
(1971, 1980), Fiutak and Engels (1973), Babiker (1975), Babiker et a1 (1974), Healy 
(1977a, b), Fiutak and Zukowski (1978,1981), Power and Thirunamachandran (1980a). 

The correct interpretation of the dynamical variables of the multipolar Hamiltonian 
has been a very controversial problem. In many papers the multipolar Hamiltonian 
has been treated as a result of a unitrary transformation of the total Coulomb gauge 
Hamiltonian. Such an interpretation leads to an incorrect interpretation of the field 
variables, which in turn gives the Heisenberg picture equations of motion which do 
not correspond with the Maxwell equations (Mandel 1979, and the comments by Power 
and Thirunamachandran 1980b, 1982, Healy 1980, 1982 and Haller 1982). 

The correct interpretation of the field E' has been given by Babiker et a1 (1974), 
Fiutak and Engels (1975), and Healy (1977a). This field is the transverse electric 
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induction vector d’, and in the case of neutral atoms d = di. This is the field which 
after averaging gives the macroscopic electric induction vector (de Groot 1969). 

In the works of Fiutak and Zukowski (1978, 1981) and  Rzgzewski and  W6dkiewicz 
( 1980) a completely gauge-independent set of canonical variables has been introduced. 
For the electromagnetic fields these are b and d. Thus the vector a is eradicated from 
the theory of the multipolar Hamiltonian. 

The basic aim of this paper is the construction of a gauge-invariant theory of the 
quantised radiation field and the Dirac electron field interacting with a nucleus of 
charge Ze represented by a static field. The total charge carried by the electron field 
is -Ze, thus in the case of bound states we get a neutral atom. We aim at a formally 
covariant theory, so that the Feynman-Dyson diagrammatic technique could be used. 
Nevertheless, the very introduction of the static field creates a privileged reference 
system. 

The electrodynamics presented in § 2 is a classical theory. However, one can 
perform the canonical quantisation thanks to the generalised Poisson brackets intro- 
duced in 0 3. In the construction of the Lagrangian and  the canonical formalism the 
emphasis is directed at the definition of the variables for both formulations. 

In § 4 we compare the path-dependent bound state electrodynamics with other 
formulations. This is given here in the context of the S-matrix. The theory can be 
shown to be completely equivalent with other formulations of bound state QED. 

However, applications of a physical theory are always associated with certain approxi- 
mations. These approximations may lead to discrepancies when different Hamiltonians 
are used, see e.g. Rzgzewski (1978), Davidovich and Nussenzweig (1978), Fried (1973), 
Bassani et a1 (1977), Reiss (1979). Thus despite the equivalence of the full S-matrices, 
the use of a truncated perturbation series may lead to different results for different 
versions of the theory. 

The multipolar form of the bound state spinor QED was first given by Babiker 
(1975). In contradistinction from Babiker’s treatment of this problem, in this paper 
the stress is laid on the gauge invariance of the description, and the Lagrangian 
formalism is formally covariant. The main thesis is that one can discard the potentials 
and use the tensor fp,, as the full set of Lagrange’s variables for the electromagnetic 
fields. However, in order to derive Maxwell’s equations from the principle of least 
action one cannot use the familiar text-book methods. This is because Maxwell’s 
equations, when expressed in terms of fields rather than potentials, d o  not have the 
form of Euler-Lagrange equations. Therefore the present work is based on a modified 
version of the Lagrangian formalism presented by Fiutak and Zukowski (1981). The 
canonical formalism presented here does not employ the potentials either. The canoni- 
cal variables for the fields are b and d. 

2. The Lagrangian and equations of motion 

The theory of the external field is a branch of QED. It is based on the separation of 
the total radiation field into two parts, one of which is treated classically, and the other 
describes the quantum effects. 

The classical field and  the current density of its source are described by the c-number 
quantities f E Z  and j y .  These are related by the equation 
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or, employing the electromagnetic potential, 

In  the standard versions of the electrodynamics of spinor fields, the interaction of 
the electromagnetic field and particles is commonly introduced through the ‘minimal 
coupling’ interaction Lagrangian, in which an  electromagnetic potential is linked to 
the current density four-vector. The potential and its derivatives are employed as 
Lagrange variables for the electromagnetic field. The action integral is then given by 

where the symbols have their usual meaning, e.g. Jauch and Rohrlich (1976). There 
are two equivalent methods of introducing the external field to the theory with potentials 
(Schwinger 1949). Either the interaction with an  external source can be described by 
the current jy  associated with it, and this amounts to adding to (2.3) the following term 

A W,, ,  = d 4 x j y u *  ( 2 . 4 ~ )  

or the interaction is introduced through the field of the external source, fyv  = a[,ay, 
and the additional term in the action integral is then given by 

U 2  

(2.4b) 

The action integral W + A W, I !  implies the following equations of motion 

aupY = j rx  - ieJly”9, (2.5) 

(2.6) ( yIJ dIJ + ieyIJa, + m ) +  = 0, 

whereas W + A W,,, gives 

aIJ f”” = ieJy”qj ( 2 . 5 ~ )  

( y IJda ,+ ieyF(u ,+a:”)+m)$  = O .  ( 2 . 6 ~ )  

One can propose studying another action integral for a neutral system consisting 
of a spinor field and an  infinitely heavy nucleus interacting with the electromagnetic 
fields. This integral may be written in the form 

where the coupling term is expressed in terms of the electromagnetic field tensor fPy ,  

and the polarisation tensor mF””[x; $1. The latter is an antisymmetric solution of the 
equation 
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with one additional condition that the total charge of the system is equal to zero, i.e. 

(2.9) 

The new spinor field is denoted as +p in order to stress that, as we shall see further, 
it differs from the gauge-dependent +. Since the currentjy has to represent an infinitely 
heavy nucleus, we shall define it as 

+oc 

j y ( z ) = Z e  I ( S ' 4 ' ( ~ - R ) d R , / d s ) d s ,  
--oc 

(2.10) 

where R, is the four-dimensional trajectory of the nucleus, which in turn is assumed 
to be at rest in a privileged reference frame; the parameter s is defined by d s  = d R p  dR,. 
This reference frame is defined by a unit time-like vector n, = dR,/ds. The polarisation 
tensor is a bivector composed of the electric polarisation p '  = mi' and the magnetisation 
m i  = f ~ ~ ~ m ' ~ ,  where the latin indices denote the three spatial dimensions. The polarisa- 
tion tensor describes the distribution of the multipole moments of the system. 

One has to construct an explicit form for the polarisation tensor. This may be done 
by adopting a path-dependent solution of (2.8) valid for all points between two 
spacelike hyperplanes a, and mz normal to n@: 

map(z) = 1; F a p P ( z ~ x ) j p ( x )  d4x, 

where the kernel is given by 

(2.1 1 )  

(2.12) 

(Zukowski 1985). The path 5 joins the point R ( x )  with x. R ( x )  is the position of the 
charge carried b y j y .  Its dependence on x can be defined by the following invariant 
condition 

(xa  - R"(x))  dR,(x)/ds=O, 

which means that R ( x )  is the point of the intersection of a hyperplane a, which is 
normal to n, and contains the event point x,, with the trajectory of the nucleus R,(s). 

The path in (2.12) is a spacelike one, with to= xo in the rest frame of the nucleus. 
The simplest choice is a straight line. 

One must stress here that arbitrary spacelike paths can be used in a more general 
description. However, such a generalisation seems to be of no practical value, except 
for a possible theoretical discussion of the invariance properties of the theory. For 
such a case one should suitably change the domain of integration in the action integral. 

The polarisation and magnetisation fields associated with the map of (2.1 1)-(2.12), 
are given in § 4, formulae (4.25)-(4.26). 

The difference between the form of the new action integral (2.7) and W + A  Wc,, ,  
can be thought of as arising from a phase transformation of the spinor variables, 
namely by going over from $ of W + A W,, to GP. This transformation is given by 

(2.13a) 
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However, the condition (2.9) has been used explicitly when passing from W+A W,,, 
to (2.7). These operations have the following influence on the form of the action 
integral W + h W, , ): 

(2.136) 

The four divergence in (2.13b) can be rewritten in the form 

IF: d4x (ff,m””[x; $pl-(j,+jey”)au). ( 2 . 1 3 ~ )  

The expression a,m+’’ is a functional of a,, (cl, and I,!JP but not their derivatives. Thus, 
when Hamilton’s principle is employed, the variations of the action integrals W +  WO, 
and W‘ are identical and the equations of motion associated with them are equivalent. 

The difference between both integrals can be considered as of more profound nature 
than merely the relation (2.136). Namely, in the case of W’, as we shall see, one can 
choose the tensorf,, as the full set of Lagrange’s variables for the electromagnetic fields. 

We shall apply the procedure of Lagrangian QFT, see e.g. Jauch and Rohrlich 
(1976), especially the section SI-I .  We treat the fields in the functional W’ as classical 
ones. With the action principle we can derive the equations of motion and the 
energy-momentum tensor. This tensor enables us to define the energy functional, 
which becomes the Hamiltonian for the canonical formulation. We firstly define the 
generalised Poisson brackets. Then the procedure of canonical quantisation is applied. 

Since the interaction term in W ‘  has a non-local form the expression for W’ can 
be written as 

W’ = 1 F2 d4x Y [ x ]  
g I  

U 2  

x I,, d4Yf,”(Y)FF”(YlX) - $p(x)I,!J,(x)m - a r , . f @ u ) .  (2.14) 

When analysing the invariance of the theory with respect to the choice of paths, we 
shall use the Lagrangian density in the form of 9”. 

The electrodynamics based on the action integral W’ is an example of a theory of 
a charged field interacting with the electromagnetic fields. As we are free to fix the 
phase factors of the charged operators, in the conventional theory with potentials the 
description of the interaction is associated with gauge transformations of the potentials, 
which compensate the changes of the phase of the charged field. The action integral 
is invariant with respect to such coupled transformations, and this is a manifestation 
of the conservation of charge. 

According to Mandelstam ( 1962) the path-dependent theories are a consequence 
of a specified method of defining the phase of charged fields at points separated by a 
finite distance. One fixes the phase at one point, here R(x) ,  and then chooses a path 
P joining this point with another point x. The phase is defined as equal on the whole 
path, and in that way one fixes it at the point x. This procedure can be path-independent 
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only when the electromagnetic fields are absent. The fields introduce a ‘phase curvature’ 
(an analogy with Riemannian geometry). 

Arbitrary changes of the kernel F a p p  can be expressed by 

A F & ” , ( y l x )  = dt[’ aty1/a~p6(4)(y  - t) ,  (2.15) 

where the integration is over a closed line formed from the old path P and the new 
path P’ both joining R ( x )  and x. The direction of the integration is obvious. For any 
x belonging to the region of spacetime between the hypersurfaces uI and uz, and for 
the fields f p y  satisfying the first pair of the Maxwell equations, i.e. 

i 

(2.16) 

(2.17) 

where a ( x )  is an arbitrary surface spanned between P and Pi. The last equation can 
be proved as follows: let U’ be an arbitrary vector potential, then we have 

(2.18) 

where for the parametrisation [”(x, I) we have t!-“(x, 1)  = x and 5” (x, 0) = R ( x ) .  The 
formula is formally identical for both paths P and P‘, thus one can infer that 

(2.19) 

Finally the relation f F Y  = a[,a,] and the use of the Stokes theorem give (2.17). It should 
be noted that the use of potentials is not necessary for the proof of (2.17), but enables 
one to achieve the aim in the shortest way. However, the first pair of the Maxwell 
equations is a necessary condition for the validity of (2.17), since otherwise the 
right-hand side would have been defined ambiguously, due to the arbitrariness of u ( x ) .  

From (2.17) one can infer that the action integral is invariant with respect to the 
changes of path in the kernel FOPp coupled with the following phase transformation 

(2.20a) 

(2.20b) 
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The transformation (2.20) is a result of a change in the phase fixing procedure associated 
with the detour from the original path. 

Reversing the argument, one can see that the path-dependence of the charged 
operators due to the phase fixing procedure proposed by Mandelstam, together with 
the arbitrariness of the paths in the kernel FLIPp, requires the imposition of the first 
pair of the Maxwell equations as constraints, rather than as equations of motion. 

As the surface a ( x )  in (2.20) is arbitrary, one can choose it to be inside a hypersurface 
of constant time. Thus only the magnetic induction vector plays a role in the phase 
fixing. The Aharonov-Bohm effect is a direct consequence of this fact. 

One can obtain the equations of motion for the electromagnetic fields from the 
principle of stationary action, if one chooses the variations of these fields, S O f F u ,  which 
are of bounded support in the region of spacetime R between the hypersurfaces U, 
and a2. This condition guarantees that the variations SOfFy vanish at U, and a2. It is 
sufficient to use variations which are infinitely differentiable, i.e. those belonging to 
the class of functions usually denoted as C:(R). The condition for the field equations 
reads 

a 2 1  
6 W' = f lU, - 6o f e y  d4x = 0. 

J f P  Y 

(2.21) 

However, the electromagnetic fields obey the constraint relations (2.16), and therefore 
the variations SofWy cannot be arbitrary. In fact 6o fFy  satisfy 

E~~~~ ay6,fUP = 0. (2.22) 

Before proceeding further one has to analyse the relation between (2.21) and  (2.22). 
The expression d 2 ' / d f w ,  in (2.21) is an  antisymmetric tensor. Let us assume that (2.22) 
is satisfied, and pep is an  arbitrary antisymmetric tensor. This implies that 

(2.23) 

for arbitrary Sofap belonging to C:(Cl), if and only if 

ampap = 0. (2.24) 

This theorem stems from the generalisation of the Helmholtz theorem to the antisym- 
metric tensors of the Minkowski space, e.g. Plebariski (1970), which says that any 
antisymmetric tensor pLIP can be split in the following way 

= E a P y s a y A B + a [ L I B P I = p i ~ + c p c p p  (2.25) 
with 

aLIpiP = o and E~~~~ ay (cps )aP  = 0. (2.26) 

As a consequence of (2.23)-(2.24) we get 

a a ( a 2 ' l r ? f , p )  = 0 (2.27) 
as a condition for (2.21). This is the equation of motion for the fields, i.e. the second 
pair of the Maxwell equations. The tensor d 2 ' / d f U P  is usually denoted as hup. The 
equations (2.27) d o  not have the traditional form of the Euler-Lagrange equations, 
and this fact was often thought to imply the necessity of the introduction of the 
potentials to the Lagrangian formalism. One can note that the method presented 
above is a general one and  can be applied in other branches of electrodynamics; 
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especially the derivation of the equation of motion for the electrodynamics of point 
particles, given by Fiutak and Zukowski (1981), can be rewritten according to the 
above scheme, and thus one could dispel any doubts that the potentials are there 
introduced to the Lagrangian formalism by backdoor methods. 

In the case of the spinor field +, the derivation of the equations of motion is 
obvious, and gives 

The equation for $(x) can be obtained by conjugation of (2.28). 

3. The energy-momentum tensor 

We shall give here the explicit expressions for the energy-momentum tensor and 
angular energy-momentum tensor. This will be achieved using the method based on 
the work of Fiutak and Zukowski (1981). 

To this end let us consider an infinitesimal Lorentz transformation 

(Ax)@ = x ‘ ~  = x p  + E ”  + Q,”x, = xP  +6x”. (3.1) 

For the fields we have 

f”’(x)+f”’(~’) = ~ “ ’ ( X ) + Q “ ~ ~ ~ ( X ) + U ’ ~ ~ ~ ( X ) = ~ ” ’ + ~ ~ ” ’ ,  (3.2) 

+JX) + +b(X’) = 4 f p W  +aa””r,,r”+,(x) = +,+ 6%. (3.3) 

The action integral is changed by an amount 

6W’= Y[x] d4x = d4x d,,(6xF9‘[x]) J A ( u i )  J: 

(3.4) 

where the symbols of the type 6 W /  S+, denote functional derivatives. 
Using the equations of constraints (2.16) we can get 

aUYfyP+aPYfay-6~LI il,fUP =a“ ( fP~sX, )+aP( f~“~x , ) .  (3.5) 
The equations of motion together with (3.4)-(3.5) finally give 

6 W’ = ( jv, du,, - dup) (  t p P ~ ,  + ~ a o p m ’ l u p ) ,  

where the energy-momentum tensor t p Y  is given by 
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and the angular energy-momentum tensor by 

X Y t P @  - t l j p Y P I Y ’ l ,  y”]*,. (3.8) m P P u  = X ’ l t P u  - 

The electromagnetic field part of P‘” is symmetric. The full t,” can be symmetrised 
using the standard procedures, see e.g. Rzewuski (1964). 

The energy density of the system is defined as the component of the energy- 
momentum tensor 

t o o = a ~ ’ / a f o V f Y O - ~ ‘ +  $ , Y O ~ O J ~ , .  (3.9) 

We can conclude that the formalism presented here verifies the thesis, that the 
Lagrange variables for the electromagnetic fields are vectors e and b. 

4. Canonical formalism 

In this section we shall present an approach which enables us to introduce the Poisson 
brackets, without any reference to the potentials. We shall establish the set of the 
canonical variables of the theory. These will be chosen in such a way that the Poisson 
brackets of the variables for the EM fields with their counterparts for the electron field 
vanish. 

The canonical formalism cannot be expressed in a covariant form, owing to the 
fact that the time translations play a special role in it. Therefore, we shall construct 
this formalism in the rest frame of the nucleus. 

The total energy of the system Po is a functional of the fields f,,, 4, and 4,. It is 
given by 

(4.1 ) 

(4.2) 

Po = 5 5  d3x too = d3x ( d  * e + $,yo do+, - 3’) 

where 
d,  = a 9 / a f o l  = hU’ = aYP/ae, ; 

the form of (4.1) suggests that as the set of canonical variables one should choose b, 

The functional of energy (4.1), when expressed by these variables, is, as we shall 
d, *p and $,Yo. 

see, the Hamiltonian of the system, i.e. the generator of the time translations: 

H = P 0 [ 4  b, $,Yo, +,I. (4.3) 

Taking the variation of Po expressed by (4.1) we obtain: 

S d ( x )  e ( x ) + d ( x )  * Se(x )  

where 

L’ = d3x Y‘[x]. I 
(4.4) 

(4.5) 

The definition of the functional derivative enables us to treat V$ as a variable dependent 



388 M Zukowski 

on $. On the other hand 

Let us now concentrate on the method of obtaining the Hamilton equations for 
the electromagnetic fields, because for the spinors the procedure is well known. 

The variations Sd and Sb are not unconstrained. The path dependence of the 
variables in H imposes additional conditions. As we work in the privileged reference 
frame, the condition 

div b = 0 (4.7) 

is enough to guarantee that the transformations (2.15), (2.20) leave the Hamiltonian 
invariant. On the other hand, as the motion of the sources is described by polarisation 
and magnetisation vectors, and formally there are no free charges, this gives for the 
electric induction the transversality condition 

div d = 0. (4.8) 

The equations (4.7) and (4.8) will serve as constraints for the canonical formulation. 
’Taking into account only the variations of the electromagnetic fields, and comparing 

(4.4), (4.6) and (4.2), from the requirement 6Po= SH, we get 1 d3x [ S d ( x )  (e(x) --) SH + S b ( x )  * ( h ( x )  --)]. SH 
W x )  W X )  

The constraints enable us to put 

S:(X--Y)w,(Y) d3Y 

(4.9) 

(4.10) 

with the same relation for Scb. The variation 6,d satisfies the constraint relation (4.8), 
whereas the ‘free’ one &d does not have to. The transverse delta function is given by 

6$(x) = S(x)6,, + ( 1/4r)d2/ax, ax,( l/lxl). 

From (4.10) and (4.9) we are led to 

(4.1 1 )  

(4.12a) 

(4.126) 

and this in turn implies that 

V x ( e ( x ) - S H / S b ( x ) )  = O = V  x ( - h ( x ) + S H / S b ( x ) ) .  (4.13) 

Finally the equations of the Lagrangian formalism enable us to put 

b ; ( ~ ) =  -V X ( S H / S d ( x ) ) ,  d ( x )  = V x ( S H / S b ( x ) ) .  (4.14a, b )  
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These formulae, together with 

&p(x) = W6(cLp(x)Yo) ,  Jp (x )y0=  - G H / W , ( x )  

constitute the complete set of Hamilton equations for the theory. 
If one introduces the generalised Poisson brackets defined as 
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(4.15a, b )  

(4.16) 

the equations (4.14)-(4.15) can be treated as examples of a general law of evolution 
for any observable dependent only on the canonical variables: 

4= {9, H } .  (4.17) 

The explicit form of the Hamiltonian is given by 

H =  d 3 x ( ~ d 2 ( x ) + ~ b 2 ( x ) - p ( x )  *d (x )+ ip2(x ) -m(x)  * b(x) 

+ Jp(x)r * aG,(x)+ mcLp(x)Gp(x)). 

5 
The total momentum of the electrons and photons can be written as 

(4.18) 

P = PfS P ,  (4.19) 

where 

Pf= d3x (d(x)  x b(x)) i 
and 

P ,  = 5 d 3 x $ p ( ~ ) ~ o V + p ( ~ ) .  

For the angular momentum we have 

M = M f +  M ,  

Mf= d3xxx(d (x )xb(x ) )  5 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

M m =  5 d3x [xX((L~(X)Y~VG~(X))-~~~L~(X)Y~~G~(X)I (4.24) 

where the matrix X is defined by Z, = -ieYky'yk. The functionals (4.19)-(4.24) are the 
canonical generators of translations and rotations. The splittings (4.19) and (4.22) can 
be called canonical, because for example, the generators Pf and Mf govern the rotations 
and translations of the canonical variables for the EM fields. 

In the rest frame of the nucleus the polarisation and magnetisation vectors are 
given by formulae (4.25)-(4.26). If one puts R = 0, these read 

p ' ( z )  = d3x df 8'3'(7.- g)(-ie&p(x)yo+p(x)), f f: (4.25) 
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m'(z) = 1 d3x lo* d ~ J ~ & " 4 ' 3 ' ( z - S ) ( - i e d ( ~ ) y m + ( x ) ) .  (4.26) 

As a result one can rewrite the Hamiltonian in the following way 

~ d 2 ( z ) + t b Z ( z ) + ~ , ( z ) ~ . V + , ( z ) + m ~ ( z ) + ( z )  

_ -  e2 I d3zl I d3z2 ~ d , ~ z l ~ r o + p ~ z ~ ~ ~ ~ d p ~ z ~ ~ ~ o + p ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  - z21)-' 

J 
2 

+ d3z [( - i Z e 2 ~ p ( z ) y o + , ( z ) ~ ( 4 . r r ~ z ~ ~ ~ '  +tpL2(z)1, (4.27) 

where we have used the properties of the 6 l  function. Using the new form of the 
Hamiltonian one can write down the explicit form of Hamilton's equations 

d ( x )  = V x ( b  - m), (4.28) 

(4.29) 

(4.30) 

The equation for Gp can be obtained by conjugation of (4.30). In the non-relativistic 
limit of the equation (4.30) one can show that the term with the field 6 describes 
interaction of 6 with the orbital and spin angular momentum. 

The equations (4.28)-(4.30) agree with the equations (2.16), (2.27) and (2.28) for 
the Lagrangian formalism. The last two terms of (4.30) can be written together as 

-ie I; d S .  Pii(S)YOJl(X), (4.3 1) 

whereas 

e(x) = d ( x )  - p ' ( x )  - p " ( x ) .  (4.32) 

The quantisation of the theory can be performed by associating the Poisson brackets 
of the canonical variables with commutators. The structure of the general definition 
of the Poisson brackets gives the following set of non-vanishing commutators and 
anticommutators 

(4.33) 

(4.34) 
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One should stress here that the commutators of the spinors with d and 6 are zero. It 
is a clear contradistinction of this formulation with that of Mandelstam, where the EM 
field variables were not commuting with the spinors. 

As a consistency requirement for the sign of the anticommutators one can demand 
that the Heisenberg picture equations, calculated with the ordering of the Hamiltonian 
as in (4.27), should be formally identical with the Hamilton equations. 

The discussion presented in this section shows that the fields b and d are the 
canonical variables for the EM field. For the spinors we have 4, and i,. The fields 
d, +, and 6, are path dependent. The multipolar Hamiltonian should be expressed 
in terms of these fields, rather than 6 and e' plus the spinors, as it is often done. The 
formalism is gauge independent from the outset. 

5. Comparison with the Coulomb gauge formulation 

QED of atoms and molecules is usually formulated in the Coulomb gauge. In this 
gauge the electric field is split into its longitudinal eii and transversal part e', i.e. 

e(x) = e'(x) + e"(x),  (5.1) 

which are defined by the equations 

a(x) = e'(x) 

div e"(x)  = p ( x ) .  

Equation (5.3) has many solutions. However we choose the longitudinal one which 
enables us to express the Coulomb energies by 

The transverse field is expressed by a Fourier decomposition into creation and annihila- 
tion operators, i.e. by (5.2) and 

The symbols used here have their standard meaning, e.g. Kroll(1968). For the creation 
and annihilation operators we have 

The Power-Zienau type transformation leading to the multipolar version of the 
theory is given by 

U = exp( i 1 d3xp(x)  a ( x ) )  
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with p ( x )  defined by the formula (4.25), with &, and $, now replaced by the path- 
independent Coulomb gauge spinor operators. The relation between the path-depen- 
dent and Coulomb gauge variables is given by 

(5 .9 )  

(5.10) 

(5.1 1) 

The spinor operators of the path-dependent theory are marked by the letter p, to 
distinguish them from the Coulomb gauge ones. 

When adopting the notion of canonical transformations to quantum mechanics, 
one must be very careful in order to avoid confusion. In the author’s view one should 
comply with the remarks of Dirac (1958). The analogy between the canonical transfor- 
mations in classical mechanics and the unitary transformations in quantum mechanics 
is that both are applied to the canonical variables of the theories. The Hamiltonian, 
for the time-independent transformations, is left intact, but re-expressed in the new 
variables. Many authors treat the unitary transformation H’= U-IHU as a canonical 
transformation. Such an approach demands great care, because with this transforma- 
tion is associated a change in the Heisenberg equations of motion, i.e. 

[q,  U-IHUl + [q,  HI = 4 (5.13) 

(see e.g. Mandel (1979) and the comments listed in the introduction). 
In the perturbation calculus we split the total Hamiltonian into a ‘free’ Ho part 

and an interaction part HINT. The Ho is always a simple one, and in the case of the 
Coulomb gauge it reads 

Ho= d3x [ ( ie i2(x)  + i b 2 ( x ) ) +  ( L ( x ) y .  V$(x) 

+ m ~ J ( x ) + ( x )  - i ~ e ’ ( 4 ~ l x l ) - ’ J ; ( x ) ~ ~ 9 ( x ) ]  (5.14) 

(for the Furry picture). It is clear that UHoU-l should be used as a new ‘free’ part 
Hh for the path-dependent case. It has the same form as (5.14) with e’, 6 and CC, 
replaced by d, 4, and 9,. The eigenstates of the respective ‘free’ Hamiltonian will be 
denoted as is) and IS’). 

When interpreting the relation between both formulations one should also note 
that the definition of the photon is not identical for both cases. The Coulomb gauge 
transverse field is given by 

eL(x) = i 2 

i 

d3k - h i ( 2 ( 2 4 3 ) - 1 ’ 2 4  ( k ) ( a A  ( k )  exp(ik * x) 
A = I  * J  

- a ; ( k )  exp(-ik. x)). (5.15) 

For the path-dependent description we have a different situation. The field e(x) is 
split in the following way 

4 x 1  = d ( x )  - P ( x )  (5.16) 

where - p ( x ) ,  just as the field e”(x), is a solution of the equation 

div(-p(x)) = P ( X )  (5.17) 
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but this time given by the path-dependent form (4.25). The field d ( x 1  can be expressed 
by redefined creation and annihilation operators 

d ( x ) = i  d 3 k . j k ( 2 ( 2 . r r ) 3 ) - ” 2 E ^ , ( k ) ( u j , ( k )  exp( ik .x )  
A = I  

- ui;’(k)  exp(- ik-x) ) ,  

’ 5  
(5.18) 

(5.19) 

and 

a i + ( k )  = U a : ( k ) U - ’  = ( u l ( k ) ) + .  (5.20) 

The equations (5.18)-(5.19) show that the word ‘photon’ has, at least formally, different 
meaning for both theories. As it was pointed out by Rzgzewski (1978) and Rzgiewski 
and  Zakowicz (1980) the state of photon vacuum, for the non-interacting fields, is 
associated with a different total electric field, i.e. 

Nevertheless, Healy and  Wooley (1978) have shown that the S-matrix elements, 
which one obtains with the use of the multipolar path-dependent Hamiltonian of point 
charges are equivalent to those for the Coulomb Hamiltonian. The proof was up  to 
the order e2 ,  and can be easily rewritten for the spinor QED. However, in their approach 
the equivalence means that processes 1 i )  + 1 f) and I i ’ )  = U1 I) + 1 f’) = U /  f) have the 
same S-matrix elements. The authors did not give any clear interpretation of the 
relation between the eigenstates of the different ‘free’ Hamiltonians. 

The equivalence of the S-matrices up  to all orders in perturbation theory was shown 
by Haller and Landovitz (1970). However, this has been done in a different context. 
Since the derivation given in this work was quite general it has been applied to the 
problem which we discuss here by Haller and Sohn (1979), see also Aharonov and  
Au (1979). However, the equivalence has been shown only up to the interpretation 
questions mentioned in the previous paragraph. 

These difficulties are associated with the unrealistic situation that the eigenstates 
of ‘free’ Hamiltonian describe. The photons are totally unlocalised, and the atom is 
decoupled from the radiation. If one introduces wavepackets for the description of 
photons, and works only with the eigenstates of the full Hamiltonian, these difficulties 
can be avoided. 

In  the work of Zukowski (1982) such procedure was proposed. The S-matrix theory 
can be based on Kroll’s (1968) adaptation of the formalism cf Wick (1955). The whole 
derivation of Zukowski can be very easily adopted to the case discussed in this paper. 
The only basic difference is that now the creation and  annihilation operators are given 
by (5.18)-( 5.19). From the analysis one can conclude the eigenstates of Ho and UHo U - ‘  
can be interpreted as completely equivalent, if they are related by Is’) = Uls).  For the 
details see Zukowski (1982). 
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